[1] L.
A. Kolahalam, I. V. Kasi Viswanath, B. S. Diwakar, B. Govindh, V. Reddy, and Y.
L. N. Murthy, “Review on nanomaterials: Synthesis and applications,” Mater.
Today Proc., vol. 18, pp. 2182–2190, Jan. 2019, doi:
10.1016/J.MATPR.2019.07.371.
[2] A. F. V. da Silva et al., “Green
synthesis of zirconia nanoparticles based on Euclea natalensis plant extract:
Optimization of reaction conditions and evaluation of adsorptive properties,” Colloids
Surfaces A Physicochem. Eng. Asp., vol. 583, pp. 123915, 2019, doi:
https://doi.org/10.1016/j.colsurfa.2019.123915.
[3] H. N. Ğ. Lu, A. A. Güngör, and S. İ.
Nce, “Synthesis of Nanoparticles by Green Synthesis Method,” INJIRR, vol. 1, no. 1, pp. 6–9, 2017.
[4] S. Iravani, “Green synthesis of metal
nanoparticles using plants,” Green Chem., vol. 13, no. 10, pp.
2638–2650, 2011, doi: 10.1039/c1gc15386b.
[5] A. Rautela, J. Rani, and M. Debnath,
“Green synthesis of silver nanoparticles from Tectona grandis seeds extract:
characterization and mechanism of antimicrobial action on different
microorganisms,” J. Anal. Sci. Technol., vol. 10, 2019, doi:
10.1186/s40543-018-0163-z.
[6] D. Garibo et al., “Green
synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit
high-antimicrobial activity,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020,
doi: 10.1038/s41598-020-69606-7.
[7] H. C. A. Murthy, T. Desalegn, M. Kassa,
B. Abebe, and T. Assefa, “Synthesis of Green Copper Nanoparticles Using
Medicinal Plant Hagenia abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial
Properties,” J. Nanomater., vol. 2020, 2020, doi: 10.1155/2020/3924081.
[8] I. Bibi et al., “Green synthesis
of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic
activity evaluation for the degradation of textile dye,” J. Mater. Res.
Technol., vol. 8, no. 6, pp. 6115–6124, Nov. 2019, doi:
10.1016/j.jmrt.2019.10.006.
[9] M. Kumaresan, K. Vijai Anand, K.
Govindaraju, S. Tamilselvan, and V. Ganesh Kumar, “Seaweed Sargassum wightii
mediated preparation of zirconia (ZrO2 ) nanoparticles and their
antibacterial activity against gram positive and gram negative bacteria,” Microb.
Pathog., vol. 124, no. November 2017, pp. 311–315, 2018, doi:
10.1016/j.micpath.2018.08.060.
[10] P. Nimare and A. A. Koser, “Biological
Synthesis of ZrO2 Nanoparticle Using Azadirachta Indica Leaf
Extract,” IRJET, vol. 03, no. 7, pp.
1910–1912, 2016.
[11] S. Shanthi and S. Tharani, “Green
Synthesis of Zirconium Dioxide (ZrO2) Nano Particles Using Acalypha
Indica Leaf Extract,” Int. J. Eng. Appl. Sci., vol. 3, no. 4, pp.
257689, 2016.
[12] A. F. V. da Silva et al., “Green
synthesis of zirconia nanoparticles based on Euclea natalensis plant extract:
Optimization of reaction conditions and evaluation of adsorptive properties,” Colloids
Surfaces A Physicochem. Eng. Asp., vol. 583, pp. 123915, Dec. 2019, doi:
10.1016/J.COLSURFA.2019.123915.
[13] V. Bansal, D. Rautaray, A. Ahmad, and M.
Sastry, “Biosynthesis of zirconia nanoparticles using the fungus Fusarium
oxysporum,” J. Mater. Chem., vol. 14, no. 22, pp. 3303, Jul. 2004, doi:
10.1039/ b407904c.
[14] N. Al-Zaqri, A. Muthuvel, M. Jothibas, A.
Alsalme, F. A. Alharthi, and V. Mohana, “Biosynthesis of zirconium oxide
nanoparticles using Wrightia tinctoria leaf extract: Characterization,
photocatalytic degradation and antibacterial activities,” Inorg. Chem.
Commun., vol. 127, pp. 108507, May 2021, doi: 10.1016/J.INOCHE.2021.108507.
[15] M. Bishwokarma, A. Bhujel, M. Baskota, and
R. Pandit, “Green Synthesis of Zirconia (ZrO2) Nanoparticles using
Curcuma Longa Extract and Investigation of Compressive Strength of Epoxy resin
(EP)/ZrO2 Nanocomposites,” J. Nepal Chem. Soc., vol. 42, no.
1, pp. 45–50, 2021, doi: 10.3126/jncs.v42i1.35328.
[16] K. Geethalakshmi, T. Prabhakaran, and J.
Hemalatha, “Dielectric Studies on Nano Zirconium Dioxide Synthesized through
Co-Precipitation Process,” Int. J. Mater. Metall. Eng., vol. 6, no. 4,
pp. 256–259, 2012.
[17] D. R. Clarke, M. Oechsner, and N. P.
Padture, “Thermal-barrier coatings for more efficient gas-turbine engines,” MRS
Bull., vol. 37, no. 10, pp. 891–898, 2012, doi: 10.1557/mrs.2012.232.
[18] A. N. Cranin, P. A. Schnitman, M. Rabkin,
T. Dennison, and E. J. Onesto, “Alumina and zirconia coated vitallium oral
endosteal implants in beagles,” J. Biomed. Mater. Res., vol. 9, no. 4,
pp. 257–262, Jul. 1975, doi: 10.1002/jbm.820090429.
[19] K. R. Raghupathi, R. T. Koodali, and A. C.
Manna, “Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial
Activity of Zinc Oxide Nanoparticles,” Langmuir, vol. 27, no. 7, pp.
4020–4028, Jul. 2011, doi: 10.1021/la104825u.
[20] M. Almatar, E. A. Makky, I. Var, and F.
Köksal, “The Role of Nanoparticles in the Inhibition of Multidrug-Resistant
Bacteria and Biofilms,” Current Drug
Delivery, vol. 15, no. 4, pp. 470-484, 2018, doi:
10.2174/1567201815666171207163504.
[21] P.-R. Hsueh, “New Delhi
Metallo-β-lactamase-1 (NDM-1): An Emerging Threat Among Enterobacteriaceae,” J.
Formos. Med. Assoc., vol. 109, no. 10, pp. 685–687, Oct. 2010, doi:
10.1016/S0929-6646(10)60111-8.
[22] S. L. Jangra et al., “Antimicrobial
activity of zirconia (ZrO2) nanoparticles and zirconium complexes,” J.
Nanosci. Nanotechnol., vol. 12, no. 9, pp. 7105–7112, 2012, doi:
10.1166/jnn.2012.6574.
[23] M. Khan et al., “Enhanced
Antimicrobial Activity of Biofunctionalized Zirconia Nanoparticles,” ACS Omega,
vol. 5, no. 4, pp. 1987–1996, 2020, doi: 10.1021/acsomega.9b03840.
[24] A. Girigoswami, “Size Attenuated Copper
Doped Zirconia Nanoparticles Enhances in Vitro Antimicrobial Properties,” Research Square, pp. 1-16, 2021, doi:
10.21203/rs.3.rs-807437/v1.
[25] Y. Reyes-lo and U. Auto, “ZrO2
− ZnO Nanoparticles as Antibacterial Agents,” ACS Omega, vol. 4, no. 21, pp. 19216-19224, 2019., doi: 10.1021/acsomega.
9b02527.
[26] N. S. Al-chalabi, N. I. Al-barhawi, and Z.
F. Daood, “Antimicrobial Activity of Some Complexes of Zr (IV) and Cd (II) with
Benzaldazine Derivatives on Growth of Some Pathogenic Bacteria," Journal of Education and Science, vol.
2021, no. Icbsum, pp. 63–72, 2021, doi: 10.33899/edusj.2000.168655.
[27] M. J. Hajipour et al., “Antibacterial
properties of nanoparticles,” Trends
Biotechnol., vol. 30, no. 10, pp. 499–511, 2012, doi:
10.1016/j.tibtech.2012.06.004.
[28] J. B. Fathima, A. Pugazhendhi, and R.
Venis, “Synthesis and characterization of ZrO2 nanoparticles-antimicrobial
activity and their prospective role in dental care,” Microb. Pathog.,
vol. 110, pp. 245–251, Sep. 2017, doi: 10.1016/j.micpath.2017.06.039.
[29] B. Gorji, R. Fazaeli, and N. Niksirat,
“Synthesis and Characterizations of Silica Nanoparticles by a New Sol-Gel
Method,” Q. J. Appl. Chem. Res., vol. 6, no. 3, pp. 22–26, 2012.
[30] K. Banerjee, M. Prithviraj, N. Augustine,
S. P. Pradeep, and P. Thiagarajan, “Analytical characterization and
antimicrobial activity of nano zirconia particles,” J. Chem. Pharm. Sci.,
vol. 9, no. 3, pp. 1186–1190, 2016.
[31] S. Gowri, R. Rajiv Gandhi, and M.
Sundrarajan, “Structural, optical, antibacterial and antifungal properties of
zirconia nanoparticles by biobased protocol,” J. Mater. Sci. Technol.,
vol. 30, no. 8, pp. 782–790, 2014, doi: 10.1016/j.jmst.2014.03.002.
[32] Y. N. Slavin, J. Asnis, U. O. Häfeli, and
H. Bach, “Metal nanoparticles : understanding the mechanisms behind
antibacterial activity,” J. Nanobiotechnology, pp. 1–20, 2017, doi:
10.1186/s12951-017-0308-z.