Abstract View

Author(s): Nelson Rai1, Sambridhi Shah2, Rajendra Joshi3, Rajesh Pandit4

Email(s): 1rajesh.pandit@trc.tu.edu.np

Address:

    Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal

Published In:   Volume - 1,      Issue - 1,     Year - 2021

DOI: Not Available

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Green synthesis of nanoparticles (NPs) using plant extract is an eco-friendly and economical method widely used in materials science. In this work, the synthesis of zirconia (Zirconium dioxide) NPs was carried out using the Citrus Sinensis peels extract. The synthesized NPs were characterized by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopic technique. The synthesized zirconia NPs were further analysed for their comparative antibacterial activity with Cefotaxime (CTX) against gram-negative bacteria, i.e., Escherichia coli and Klebsiella pneumoniae, and gram-positive bacteria, i.e., Staphylococcus aureus. The XRD and FTIR spectroscopic analysis confirmed the formation of zirconia in nanometric size. Furthermore, the results showed that zirconia NPs were susceptible against both gram-negative bacteria while it remains ineffective towards the gram-positive bacteria. In addition to that, the zirconia NPs acted as an excellent enhancer in increasing the bactericidal properties of CTX against both gram-negative bacteria Escherichia coli and Klebsiella pneumoniae. However, zirconia neither exhibited antibacterial activity nor enhanced the bactericidal effect of Cefotaxime against gram-positive bacteria Staphylococcus aureus.

Cite this article:
Nelson Rai, Sambridhi Shah, Rajendra Joshi, Rajesh Pandit (2021).Green Synthesis and Characterization of Zirconia Nanoparticles using Extract of Citrus sinensis Peels and its Comparative Antibacterial Activity with Cefotaxime. Spectrum of Emerging Sciences, 1(1), pp. 36-41.


 

[1]       L. A. Kolahalam, I. V. Kasi Viswanath, B. S. Diwakar, B. Govindh, V. Reddy, and Y. L. N. Murthy, “Review on nanomaterials: Synthesis and applications,” Mater. Today Proc., vol. 18, pp. 2182–2190, Jan. 2019, doi: 10.1016/J.MATPR.2019.07.371.

[2]        A. F. V. da Silva et al., “Green synthesis of zirconia nanoparticles based on Euclea natalensis plant extract: Optimization of reaction conditions and evaluation of adsorptive properties,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 583, pp. 123915, 2019, doi: https://doi.org/10.1016/j.colsurfa.2019.123915.

[3]        H. N. Ğ. Lu, A. A. Güngör, and S. İ. Nce, “Synthesis of Nanoparticles by Green Synthesis Method,” INJIRR, vol. 1, no. 1, pp. 6–9, 2017.

[4]        S. Iravani, “Green synthesis of metal nanoparticles using plants,” Green Chem., vol. 13, no. 10, pp. 2638–2650, 2011, doi: 10.1039/c1gc15386b.

[5]        A. Rautela, J. Rani, and M. Debnath, “Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms,” J. Anal. Sci. Technol., vol. 10, 2019, doi: 10.1186/s40543-018-0163-z.

[6]        D. Garibo et al., “Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-020-69606-7.

[7]        H. C. A. Murthy, T. Desalegn, M. Kassa, B. Abebe, and T. Assefa, “Synthesis of Green Copper Nanoparticles Using Medicinal Plant Hagenia abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial Properties,” J. Nanomater., vol. 2020, 2020, doi: 10.1155/2020/3924081.

[8]        I. Bibi et al., “Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye,” J. Mater. Res. Technol., vol. 8, no. 6, pp. 6115–6124, Nov. 2019, doi: 10.1016/j.jmrt.2019.10.006.

[9]        M. Kumaresan, K. Vijai Anand, K. Govindaraju, S. Tamilselvan, and V. Ganesh Kumar, “Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2 ) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria,” Microb. Pathog., vol. 124, no. November 2017, pp. 311–315, 2018, doi: 10.1016/j.micpath.2018.08.060.

[10]      P. Nimare and A. A. Koser, “Biological Synthesis of ZrO2 Nanoparticle Using Azadirachta Indica Leaf Extract,” IRJET, vol. 03, no. 7, pp. 1910–1912, 2016.

[11]      S. Shanthi and S. Tharani, “Green Synthesis of Zirconium Dioxide (ZrO2) Nano Particles Using Acalypha Indica Leaf Extract,” Int. J. Eng. Appl. Sci., vol. 3, no. 4, pp. 257689, 2016.

[12]      A. F. V. da Silva et al., “Green synthesis of zirconia nanoparticles based on Euclea natalensis plant extract: Optimization of reaction conditions and evaluation of adsorptive properties,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 583, pp. 123915, Dec. 2019, doi: 10.1016/J.COLSURFA.2019.123915.

[13]      V. Bansal, D. Rautaray, A. Ahmad, and M. Sastry, “Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum,” J. Mater. Chem., vol. 14, no. 22, pp. 3303, Jul. 2004, doi: 10.1039/ b407904c.

[14]      N. Al-Zaqri, A. Muthuvel, M. Jothibas, A. Alsalme, F. A. Alharthi, and V. Mohana, “Biosynthesis of zirconium oxide nanoparticles using Wrightia tinctoria leaf extract: Characterization, photocatalytic degradation and antibacterial activities,” Inorg. Chem. Commun., vol. 127, pp. 108507, May 2021, doi: 10.1016/J.INOCHE.2021.108507.

[15]      M. Bishwokarma, A. Bhujel, M. Baskota, and R. Pandit, “Green Synthesis of Zirconia (ZrO2) Nanoparticles using Curcuma Longa Extract and Investigation of Compressive Strength of Epoxy resin (EP)/ZrO2 Nanocomposites,” J. Nepal Chem. Soc., vol. 42, no. 1, pp. 45–50, 2021, doi: 10.3126/jncs.v42i1.35328.

[16]      K. Geethalakshmi, T. Prabhakaran, and J. Hemalatha, “Dielectric Studies on Nano Zirconium Dioxide Synthesized through Co-Precipitation Process,” Int. J. Mater. Metall. Eng., vol. 6, no. 4, pp. 256–259, 2012.

[17]      D. R. Clarke, M. Oechsner, and N. P. Padture, “Thermal-barrier coatings for more efficient gas-turbine engines,” MRS Bull., vol. 37, no. 10, pp. 891–898, 2012, doi: 10.1557/mrs.2012.232.

[18]      A. N. Cranin, P. A. Schnitman, M. Rabkin, T. Dennison, and E. J. Onesto, “Alumina and zirconia coated vitallium oral endosteal implants in beagles,” J. Biomed. Mater. Res., vol. 9, no. 4, pp. 257–262, Jul. 1975, doi: 10.1002/jbm.820090429.

[19]      K. R. Raghupathi, R. T. Koodali, and A. C. Manna, “Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles,” Langmuir, vol. 27, no. 7, pp. 4020–4028, Jul. 2011, doi: 10.1021/la104825u.

[20]      M. Almatar, E. A. Makky, I. Var, and F. Köksal, “The Role of Nanoparticles in the Inhibition of Multidrug-Resistant Bacteria and Biofilms,” Current Drug Delivery, vol. 15, no. 4, pp. 470-484, 2018, doi: 10.2174/1567201815666171207163504.

[21]      P.-R. Hsueh, “New Delhi Metallo-β-lactamase-1 (NDM-1): An Emerging Threat Among Enterobacteriaceae,” J. Formos. Med. Assoc., vol. 109, no. 10, pp. 685–687, Oct. 2010, doi: 10.1016/S0929-6646(10)60111-8.

[22]      S. L. Jangra et al., “Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes,” J. Nanosci. Nanotechnol., vol. 12, no. 9, pp. 7105–7112, 2012, doi: 10.1166/jnn.2012.6574.

[23]      M. Khan et al., “Enhanced Antimicrobial Activity of Biofunctionalized Zirconia Nanoparticles,” ACS Omega, vol. 5, no. 4, pp. 1987–1996, 2020, doi: 10.1021/acsomega.9b03840.

[24]      A. Girigoswami, “Size Attenuated Copper Doped Zirconia Nanoparticles Enhances in Vitro Antimicrobial Properties,” Research Square, pp. 1-16, 2021, doi: 10.21203/rs.3.rs-807437/v1.

[25]      Y. Reyes-lo and U. Auto, “ZrO2 − ZnO Nanoparticles as Antibacterial Agents,” ACS Omega, vol. 4, no. 21, pp. 19216-19224, 2019., doi: 10.1021/acsomega. 9b02527.

[26]      N. S. Al-chalabi, N. I. Al-barhawi, and Z. F. Daood, “Antimicrobial Activity of Some Complexes of Zr (IV) and Cd (II) with Benzaldazine Derivatives on Growth of Some Pathogenic Bacteria," Journal of Education and Science, vol. 2021, no. Icbsum, pp. 63–72, 2021, doi: 10.33899/edusj.2000.168655.

[27]      M. J. Hajipour et al., “Antibacterial properties of nanoparticles,” Trends Biotechnol., vol. 30, no. 10, pp. 499–511, 2012, doi: 10.1016/j.tibtech.2012.06.004.

[28]      J. B. Fathima, A. Pugazhendhi, and R. Venis, “Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care,” Microb. Pathog., vol. 110, pp. 245–251, Sep. 2017, doi: 10.1016/j.micpath.2017.06.039.

[29]      B. Gorji, R. Fazaeli, and N. Niksirat, “Synthesis and Characterizations of Silica Nanoparticles by a New Sol-Gel Method,” Q. J. Appl. Chem. Res., vol. 6, no. 3, pp. 22–26, 2012.

[30]      K. Banerjee, M. Prithviraj, N. Augustine, S. P. Pradeep, and P. Thiagarajan, “Analytical characterization and antimicrobial activity of nano zirconia particles,” J. Chem. Pharm. Sci., vol. 9, no. 3, pp. 1186–1190, 2016.

[31]      S. Gowri, R. Rajiv Gandhi, and M. Sundrarajan, “Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol,” J. Mater. Sci. Technol., vol. 30, no. 8, pp. 782–790, 2014, doi: 10.1016/j.jmst.2014.03.002.

[32]      Y. N. Slavin, J. Asnis, U. O. Häfeli, and H. Bach, “Metal nanoparticles : understanding the mechanisms behind antibacterial activity,” J. Nanobiotechnology, pp. 1–20, 2017, doi: 10.1186/s12951-017-0308-z.

Related Images:



Recent Images



Impact of Information Technology on Organizational Business Performance
Probiotics and their role in food microbiology: a review of health benefits and practical applications.
Probabilistic Models for Predicting Cardiac Arrhythmias Using Machine Learning.
The Potential for Increasing Antimicrobial Activity in Cow dung.
Fatty acid composition of Chara species for nutritional and biofuel implications.
Comparing the antibacterial activity of plants against bacteria
Autonomous Quadruple Spider Robot for Surveillance and Exploration with Advanced 3D Mapping
Automated Petrol Dispensing System with Smart Card and RFID Integration
Navigation Radar system compatible with IOT
Design of smart nose system for hazardous zone

Tags


Recomonded Articles: