[1]
UNEP (United Nations Environment Program). 2019.
Global Environmental Outlook 6: Healthy Planet, Healthy People. Nairobi: UNEP.
https://www.unenvironment.org/resources/global-environment-outlook-6
[2]
WHO (World Health Organization). 2018. “Ambient
(Outdoor) Air Pollution.” WHO Fact Sheet, May 2.
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
[3]
UNEP. 2018. Towards a Pollution-Free Planet:
Background Report. Nairobi: UNEP. https://www.unenvironment.org/resources/report/towards-pollution-free-planet-background-report
[4]
Kahn, Matthew E., Kamiar Mohaddes, Ryan N. D. Ng,
M. Hashem Pesaran, Mehdi Raissi, and Jui-Chung Yang. 2019. “Long-Term
Macroeconomic Effects of Climate Change: A Cross-Country Analysis.” IMF Working
Paper 19/215, October 11.
https://www.imf.org/en/Publications/WP/Issues/2019/10/11/Long-Term
Macroeconomic-Effects-of-Climate-Change-A-Cross-Country-Analysis-48691
[5]
WEF (World Economic Forum). 2020. The Future of
Nature and Business. Geneva:
WEF.http://www3.weforum.org/docs/WEF_The_Future_Of_Nature_And_Business_2020.pdf
[6]
FAO (Food and Agriculture Administration of the
United Nations). 2020. The State of the World’s Forests 2020. Rome: FAO and
UNEP. http://www.fao.org/documents/card/en/c/ca8642en.
[7]
Steffen, W., Richardson, K., Rockstrom, J.,
Cornell, S.E.,Fetzer, I., Bennett, E.M., et al. (2015) Planetary boundaries:
Guiding human development on a changing planet. Science 347:
1259855.https://www.researchgate.net/publication/356864924_Engineering_microbial_technologies_for_environmental_sustainability_choices_to_make
[accessed Oct 10 2023].
[8]
Madsen, E.L. (2011) Microorganisms and their roles
in fundamental biogeochemical cycles. CurrOpin Biotechnol22: 456–464.
[9]
Rousk, J., and Bengtson, P. (2014) Microbial
regulation ofglobal biogeochemical cycles. Front Microbiol 5: 103
[10]
Gougoulias, C., Clark, J.M., and Shaw, L.J. (2014)
The roleof soil microbes in the global carbon cycle: tracking thebelow-ground
microbial processing of plant-derived car-bon for manipulating carbon dynamics
in agricultural sys-tems. J Sci Food Agric 94: 2362–2371
[11]
Tasoff, J., Mee, M.T., and Wang, H.H. (2015) An
economicframework of microbial trade. PLoS One 10: e0132907.
[12]
Dejonghe, W., Boon, N., Seghers, D., Top, E.M., and
Ver-straete, W. (2001) Bioaugmentation of soils by increasingmicrobial
richness: missing links. Environ Microbiol 3:649–657
[13]
Verstraete, W., Wittebolle, L., Heylen, K.,
Vanparys, B., deVos, P., van de Wiele, T., and Boon, N. (2007)
Microbialresource management: the road to go for environmentalbiotechnology.
Eng Life Sci 7: 117–126
[14]
De Vrieze, J., Christiaens, M.E.R., and Verstraete,
W.(2017) The microbiome as engineering tool: manufacturing and trading between
microorganisms. New Biotechnol39: 206–214.
[15]
Chen, H., Athar, R., Zheng, G., and Williams, H.N.
(2011)Prey bacteria shape the community structure of their predators. ISME J 5:
1314–1322.
[16]
Favere, J., Barbosa, R.G., Sleutels, T.,
Verstraete, W., DeGusseme, B., and Boon, N. (2021) Safeguarding the microbial
water quality from source to tap. Clean Water 4: 28
[17]
De Vrieze, J., De Mulder, T., Matassa, S., Zhou,
J., Ange-nent, L.T., Boon, N., and Verstraete, W. (2020) Stochasticity in
microbiology: managing unpredictability to reach the sustainable development
goals. MicrobBiotechnol 13:829–843
[18]
Prest, E.I., Hammes, F., van Loosdrecht, M.C.M.,
and Vrou-wenvelder, J.S. (2016) Biological stability of drinkingwater:
controlling factors, methods, and challenges. Front Microbiol 7: 45
[19]
Zhou, J., Deng, Y.E., Zhang, P., Xue, K., Liang,
Y., VanNostrand, J.D., et al. (2014) Stochasticity, succession,and
environmental perturbations in a fluidic ecosystem.Proc Natl Acad Sci USA 111:
E836–E845
[20]
Werner, G.D.A., Strassmann, J.E., Ivens, A.B.F.,
Engelmoer, D.J.P., Verbruggen, E., Queller, D.C., et al. (2014). Evolution of
microbial markets. Proc Natl Acad Sci USA 111: 1237–1244
[21]
Hooper, L.V., Midtvedt, T., and Gordon, J.I. (2002)
How host-microbial interactions shape the nutrient environment of the mammalian
intestine. Annu Rev Nutr 22: 283–307.
[22]
Lee, W.J., and Hase, K. (2014) Gut
microbiota-generated metabolites in animal health and disease. Nat Chem Biol
10: 416–424.
[23]
Tasoff, J., Mee, M.T., and Wang, H.H. (2015) An
economic framework of microbial trade. PLoS One 10: e0132907
[24]
Mei, R., and Liu, W.-T. (2019) Quantifying the
contribution of microbial immigration in engineered water systems. Microbiome
7: 144.
[25]
Dottorini, G., Michaelsen, T.Y., Kucheryavskiy, S.,
Andersen, K.S., Kristensen, J.M., Peces, M., et al. (2021). Mass-immigration
determines the assembly of activated sludge microbial communities. Proc Natl
Acad Sci USA 118: e2021589118.
[26]
Yanuka-Golub, K., Dubinsky, V., Korenblum, E.,
Reshef, L., Ofek-Lalzar, M., Rishpon, J., and Gophna, U. (2021). Anode surface
bioaugmentation enhances deterministic biofilm assembly in microbial fuel
cells. MBio 12: e03629-03620.
[27]
Contos, P., Wood, J.L., Murphy, N.P., and Gibb, H.
(2021). Rewilding with invertebrates and microbes to restore ecosystems:
present trends and future directions. EcolEvol 11: 7187–7200
[28]
Lal, R. (2004) Soil carbon sequestration impacts on
global climate change and food security. Science 304: 1623–1627.
[29]
Galbally, I., Meyer, C.P., Wang, Y.-P., and
Kirstine, W. (2010) Soil–atmosphere exchange of CH4, CO, N2O and NOx and the
effects of land-use change in the semiarid Mallee system in Southeastern
Australia. Glob Change Biol 16: 2407–2419.
[30]
Oertel, C., Matschullat, J., Zurba, K., Zimmermann,
F., and Erasmi, S. (2016) Greenhouse gas emissions from soils - a review.
Geochemistry 76: 327–352.
[31]
Costanza, R., d’Arge, R., de Groot, R., Farber, S.,
Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem
services and natural capital. Nature 387: 253–260.
[32]
Costanza, R., de Groot, R., Braat, L., Kubiszewski,
I., Fioramonti, L., Sutton, P., et al. (2017) Twenty years of ecosystem
services: how far have we come and how far do we still need to go? Ecosyst Serv
28: 1–16.
[33]
Statista (2021) Statista Dossier on the Global
Economy.
[34]
Yue, X.-L., and Gao, Q.-X. (2018) Contributions of
natural systems and human activity to greenhouse gas emissions. Adv Clim Change
Res 9: 243–252.
[35]
Denman, K., Brasseur, G., Chidthaisong, A., Ciais,
P., Cox, P., Dickinson, R., et al. (2007) Couplings between changes in the
climate system and biogeochemistry. In Climate Change 2007: The Physical
Science Basis. Contribution of Working Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D.,
Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L.
(eds). Cambridge, UK: Cambridge University Press, pp. 499–587.
[36]
Zomer, R.J., Bossio, D.A., Sommer, R., and Verchot,
L.V. (2017) Global sequestration potential of increased organic carbon in
cropland soils. Sci Rep 7: 15554.
[37]
Seitzinger, S., and Phillips, L. (2017) Nitrogen
stewardship in the Anthropocene. Science 357: 350–351.
[38]
Vlek, P.L.G., and Byrnes, B.H. (1986). The efficacy
and loss of fertilizer N in lowland rice. In Nitrogen Economy of Flooded Rice
Soils: Proceedings of a Symposium on the Nitrogen Economy of Flooded Rice
Soils, Washington DC, 1983. De Datta, S.K., and Patrick, W.H. (eds). Dordrecht,
the Netherlands: Springer Netherlands, pp. 131–147.
[39]
Isermann, K. (1990) Share of agriculture in
nitrogen and phosphorus emissions into the surface waters of Western Europe
against the background of their eutrophication. Fertil Res 26: 253–269.
[40]
Cassman, K.G., Peng, S., Olk, D.C., Ladha, J.K.,
Reichardt, W., Dobermann, A., and Singh, U. (1998) Opportunities for increased
nitrogen-use efficiency from improved resource management in irrigated rice
systems. Field Crop Res 56: 7–39
[41]
Erisman, J.W., Leach, A., Adams, M., Agboola, J.I.,
Ahmetaj, L., Alard, D., et al. (2014) Nitrogen deposition effects on ecosystem
services and interactions with other pollutants and climate change. In Nitrogen
Deposition, Critical Loads and Biodiversity. Sutton, M.A., Mason, K.E.,
Sheppard, L.J., Sverdrup, H., Haeuber, R., and Hicks, W.K. (eds). Dordrecht,
the Netherlands: Springer Netherlands, pp. 493–505.
[42]
Pareto, V. (1897) Le Cours d’Economie Politique.
London, UK: Macmillan.
[43]
Marzorati, M., Wittebolle, L., Boon, N.,
Daffonchio, D., and Verstraete, W. (2008) How to get more out of molecular
fingerprints: practical tools for microbial ecology. Environ Microbiol 10:
1571–1581.
[44]
Marzorati, M., Balloi, A., de Ferra, F., Corallo,
L., Carpani, G., Wittebolle, L., et al. (2010) Bacterial diversity and
reductive dehalogenase redundancy in a 1,2- dichloroethane-degrading bacterial
consortium enriched from a contaminated aquifer. Microb Cell Fact 9: 12.
[45]
Verstraete, W., and Mertens, B. (2004) Chapter 5:
The key role of soil microbes. In Developments in Soil Science. Doelman, P.,
and Eijsackers, H.J.P. (eds). Elsevier, pp. 127–157.
[46]
Thakur, M.P., and Geisen, S. (2019) Trophic
regulations of the soil microbiome. Trends Microbiol 27: 771–780
[47]
Gebremikael, M.T., Steel, H., Buchan, D., Bert, W.,
and De Neve, S. (2016) Nematodes enhance plant growth and nutrient uptake under
C and N-rich conditions. Sci Rep 6:32862.
[48]
Stockdale, E.A., Griffiths, B.S., Hargreaves, P.R.,
Bhogal, A., Crotty, F.V., and Watson, C.A. (2019) Conceptual framework
underpinning management of soil health—supporting site-specific delivery of
sustainable agroecosystems. Food Energy Security 8: e00158
[49]
Ruess, L., Haggblom, M.M., Garc Zapata, E.J., and
Dighton, J. (2002) Fatty acids of fungi and nematodes possible biomarkers in
the soil food chain? Soil Biol Biochem 34: 745–756
[50]
Yang, Y., Tilman, D., Furey, G., and Lehman, C.
(2019) Soil carbon sequestration accelerated by restoration of grassland biodiversity.
Nat Commun 10: 718
[51]
Ramos, J.L., Molina, L., and Segura, A. (2009)
Removal of organic toxic chemicals in the rhizosphere and phyllosphere of
plants. MicrobBiotechnol 2: 144–14
[52]
Huang, H., Tang, J., Niu, Z., and Giesy, J.P.
(2019) Interactions between electrokinetics and rhizoremediation on the
remediation of crude oil-contaminated soil. Chemosphere 229: 418–425.
[53]
Liang, C., Amelung, W., Lehmann, J., and Kastner,
M. (2019) Quantitative assessment of microbial necromass contribution to soil
organic matter. Glob Change Biol 25:3578–3590.
[54]
Buckeridge, K.M., La Rosa, A.F., Mason, K.E.,
Whitaker, J., McNamara, N.P., Grant, H.K., and Ostle, N.J. (2020) Sticky dead
microbes: rapid abiotic retention of microbial necromass in soil. Soil Biol
Biochem 149: 107929.
[55]
Herencia, J.F., Ruiz-Porras, J.C., Melero, S.,
GarciaGalavis, P.A., Morillo, E., and Maqueda, C. (2007) Comparison between
organic and mineral fertilization for soil fertility levels, crop macronutrient
concentrations, and yield. Agron J 99: 973–983.
[56]
Zhong, W., Gu, T., Wang, W., Zhang, B., Lin, X.,
Huang, Q., and Shen, W. (2010) The effects of mineral fertilizer and organic
manure on soil microbial community and diversity. Plant Soil 326: 511–522.
[57]
Pikaar, I., de Vrieze, J., Rabaey, K., Herrero, M.,
Smith, P., and Verstraete, W. (2018) Carbon emission avoidance and capture by
producing in-reactor microbial biomass based food, feed and slow release
fertilizer: potentials and limitations. Sci Total Environ 644: 1525–1530.
[58]
Pichler, M. (2019) Underground Sun Storage Results
and Outlook 2019: 1–4
[59]
Buxton, D.R., and Redfearn, D.D. (1997) Plant
limitations to fiber digestion and utilization. J Nutr 127: 814S–818S
[60]
Britt, J.S., Thomas, R.C., Speer, N.C., and Hall,
M.B. (2003) Efficiency of converting nutrient dry matter to milk in Holstein
Herds1. J Dairy Sci 86: 3796–3801
[61]
Kamm, B., Schonicke, P., and Hille, C. (2016) Green
biorefinery – industrial implementation. Food Chem 197: 1341–1345
[62]
Jones, R.J., Massanet-Nicolau, J., Fernandez-Feito,
R., Dinsdale, R.M., and Guwy, A.J. (2021) Fermentative volatile fatty acid
production and recovery from grass using a novel combination of solids
separation, pervaporation, and electrodialysis technologies. Bioresour Technol
342: 1259
[63]
Muller, M. (2010) Fit for purpose: taking integrated
water resource management back to basics. Irrigat Drain Syst 24: 161–175
[64]
Capodaglio, A.G. (2021) Fit-for-purpose urban
wastewater reuse: analysis of issues and available technologies for sustainable
multiple barrier approaches. Crit Rev Environ Sci Technol 51: 1619–1666.
[65]
Leverenz, H.L., Tchobanoglous, G., and Asano, T.
(2011) Direct potable reuse: a future imperative. J Water Reuse Desalination 1:
2–10.
[66]
Van Houtte, E., and Verbauwhede, J. (2008)
Operational experience with indirect potable reuse at the Flemish Coast.
Desalination 218: 198–207
[67]
Van Houtte, E., and Verbauwhede, J. (2021)
Environmental benefits from water reuse combined with managed aquifer recharge
in the Flemish dunes (Belgium). Int J Water Resour Dev 37: 1–8.
[68]
Sharma, S., and Bhattacharya, A. (2017) Drinking
water contamination and treatment techniques. Appl Water Sci 7: 1043–1067
[69]
Favere, J., Barbosa, R.G., Sleutels, T.,
Verstraete, W., De Gusseme, B., and Boon, N. (2021) Safeguarding the microbial
water quality from source to tap. npj Clean Water 4: 28.
[70]
Acosta, N., and De Vrieze, J. (2018) Anaerobic
digestion as key technology in the bio-based economy. In Biogenesis of
Hydrocarbons. Stams, A.J.M., and Sousa, D. (eds). Cham, Switzerland: Springer
International Publishing, pp. 1–19.
[71]
Wainaina, S., Awasthi, M.K., Sarsaiya, S., Chen,
H., Singh, E., Kumar, A., et al. (2020) Resource recovery and circular economy
from organic solid waste using aerobic and anaerobic digestion technologies.
Bioresour Technol 301: 122778.
[72]
Lettinga, G., van Velsen, A.F.M., Hobma, S.W., de
Zeeuw, W., and Klapwijk, A. (1980) Use of the upflow sludge blanket (USB)
reactor concept for biological wastewater treatment, especially for anaerobic
treatment. BiotechnolBioeng 22: 699–734.
[73]
Six, W., and De Baere, L. (1992) Dry anaerobic
conversion of municipal solid waste by means of the Dranco process. Water Sci
Technol 25: 295–300.
[74]
Vanwonterghem, I., Jensen, P.D., Ho, D.P.,
Batstone, D.J., and Tyson, G.W. (2014) Linking microbial community structure,
interactions and function in anaerobic digesters using new molecular
techniques. CurrOpinBiotechnol 27: 55–64
[75]
Cabezas, A., de Araujo, J.C., Callejas, C., Gales,
A., Hame- lin, J., Marone, A., et al.
(2015) How to use molecular biology tools for the study of the anaerobic
digestion process? Rev Environ Sci Biotechnol 14: 555–593
[76]
Crab, R., Defoirdt, T., Bossier, P., and
Verstraete, W. (2012) Biofloc technology in aquaculture: beneficial effects and
future challenges. Aquaculture 356–357: 351– 356.
[77]
Avnimelech, Y. (1999) Carbon/nitrogen ratio as a
control element in aquaculture systems. Aquaculture 176: 227– 235.
[78]
De Schryver, P., Crab, R., Defoirdt, T., Boon, N.,
and Verstraete, W. (2008) The basics of bio-flocs technology: the added value
for aquaculture. Aquaculture 277: 125–137
[79]
Arndt, C., Powell, J.M., Aguerre, M.J., Crump,
P.M., and Wattiaux, M.A. (2015) Feed conversion efficiency in dairy cows:
repeatability, variation in digestion and metabolism of energy and nitrogen,
and ruminal methanogens. J Dairy Sci 98: 3938–3950.
[80]
Yusuf, R. (2012) Greenhouse gas emissions-
quantifying methane emissions from livestock. Am J Eng Appl Sci 5: 1–8
[81]
Beauchemin, K.A., Kreuzer, M., O’Mara, F., and
McAllister, T.A. (2008) Nutritional management for enteric methane abatement: a
review. Aust J Exp Agric 48: 21–27
[82]
Romero-Perez, A., Okine, E.K., McGinn, S.M., Guan,
L.L., Oba, M., Duval, S.M., et al. (2014) The potential of 3- nitrooxypropanol
to lower enteric methane emissions from beef cattle. J Anim Sci 92: 4682–4693.
[83]
Mason, P.M., and Stuckey, D.C. (2016) Biofilms,
bubbles and boundary layers – a new approach to understanding cellulolysis in
anaerobic and ruminant digestion. Water Res 104: 93–100.
[84]
Kamm, B., Schonicke, P., and Hille, C. (2016) Green
biore € finery – industrial implementation. Food Chem 197: 1341–1345.
[85]
Van de Wiele, T., Van den Abbeele, P., Ossieur, W.,
Possemiers, S., Marzorati, M., et al. (2015) The Simulator of the Human
Intestinal Microbial Ecosystem (SHIME). In The Impact of Food Bioactives on
Health: in vitro and ex vivo models. Verhoeckx, K., Cotter, P., Lopez-Exposito,
I.,Kleiveland, C., Lea, T., and Mackie, A. (eds). Cham, Switzerland: Springer
International Publishing, pp. 305–317.
[86]
Pennisi, E. (2019) Gut bacteria linked to mental
well-being and depression. Science 363: 569.
[87]
Lee, S.-H., Yoon, S.-H., Jung, Y., Kim, N., Min,
U., Chun, J., and Choi, I. (2020) Emotional well-being and gut microbiome
profiles by enterotype. Sci Rep 10: 20736.
[88]
Valles-Colomer, M., Falony, G., Darzi, Y.,
Tigchelaar, E.F., Wang, J., Tito, R.Y., et al. (2019) The neuroactive potential
of the human gut microbiota in quality of life and depression. Nat Microbiol 4:
623–632.
[89]
Lambrecht, B.N., and Hammad, H. (2017) The
immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol 18:
1076–1083
[90]
Ruokolainen, L., Paalanen, L., Karkman, A.,
Laatikainen, T., von Hertzen, L., Vlasoff, T., et al. (2017) Significant
disparities in allergy prevalence and microbiota between the young people in
Finnish and Russian Karelia. Clin Exp Allergy 47: 665–674
[91]
Caselli, E. (2017) Hygiene: microbial strategies to
reduce pathogens and drug resistance in clinical settings. MicrobBiotechnol 10:
1079–1083.
[92]
Clauwaert, P., Muys, M., Alloul, A., De Paepe, J.,
Luther, A., Sun, X., et al. (2017) Nitrogen cycling in Bioregenerative Life
Support Systems: challenges for waste refinery and food production processes.
Prog Aerosp Sci 91: 87–98.
[93]
Braude, R., Hosking, Z.D., Mitchell, K.G., Plonka,
S., and Sambrook, I.E. (1977) Pruteen, a new source of protein for growing
pigs. I. Metabolic experiment: Utilization of nitrogen. Livestock Prod Sci 4:
79–89
[94]
Anupama, and Ravindra, P. (2000) Value-added food:
single cell protein. Biotechnol Adv 18: 459–479.
[95]
Coll, M., Libralato, S., Tudela, S., Palomera, I.,
and Pranovi, F. (2008) Ecosystem overfishing in the ocean. PLoS One 3: e3881.
[96]
Capson-Tojo, G., Batstone, D.J., Grassino, M.,
Vlaeminck, S.E., Puyol, D., Verstraete, W., et al. (2020) Purple phototrophic
bacteria for resource recovery: challenges and opportunities. Biotechnol Adv
43: 107567
[97]
Leger, D., Matassa, S., Noor, E., Shepon, A., Milo,
R., and Bar-Even, A. (2021) Photovoltaic-driven microbial protein production
can use land and sunlight more efficiently than conventional crops. Proc Natl
Acad Sci USA 118: e2015025118.
[98]
Matassa, S., Boon, N., and Verstraete, W. (2015)
Resource recovery from used water: the manufacturing abilities of
hydrogen-oxidizing bacteria. Water Res 68: 467–478.
[99]
Jarvio, N., Maljanen, N.-L., Kobayashi, Y., Ryyn €
anen, T., and Tuomisto, H.L. (2021) An attributional life cycle assessment of
microbial protein production: A case study on using hydrogen-oxidizing
bacteria. Sci Total Environ, 776, 145764.
[100]
Khoshnevisan, B., Dodds, M., Tsapekos, P., Torresi,
E., Smets, B.F., and Angelidaki, I. (2020) Coupling electrochemical ammonia
extraction and cultivation of methane oxidizing bacteria for production of
microbial protein. J Environ Manage, 265, 110560.
[101]
Sillman, J., Uusitalo, V., Ruuskanen, V., Ojala,
L., Kahiluoto, H., Soukka, R., and Ahola, J. (2020) A life cycle environmental
sustainability analysis of microbial protein production via power-to-food
approaches. Int J Life Cycle Assess 25: 2190–2203.
[102]
Singha, S., Mahmutovic, M., Zamalloa, C., Stragier,
L., Verstraete, W., Svagan, A.J., et al. (2021) Novel bioplast from single cell
protein as a potential packaging material. ACS Sustain Chem Eng 9: 6337–6346.
[103]
Vethathirri, R., Santillan, E., and Wuertz, S.
(2021) Microbial community-based protein production from wastewater for animal
feed applications. Bioresour Technol 341: 125723.
[104]
Tsapekos, P., Zhu, X., Pallis, E., and Angelidaki,
I. (2020) Proteinaceous methanotrophs for feed additive using biowaste as
carbon and nutrients source. Bioresour Technol 313: 123646.
[105]
Matassa, S., Papirio, S., Pikaar, I., Hulsen, T.,
Leijenhorst, € E., Esposito, G., et al. (2020) Upcycling of biowaste carbon and
nutrients in line with consumer confidence: the “full gas” route to single cell
protein. Green Chem 22: 4912–4929
[106]
Maria, A., Lammi, M., Harri, P., Ruppel, T., and
Valokari, K. € (2015) Towards Circular Economy Business Models: Consumer
Acceptance of Novel Service
[107]
Marco, M.L., Heeney, D., Binda, S., Cifelli, C.J.,
Cotter, P.D., Foligne, B., et al.
(2017) Health benefits of fermented foods: microbiota and beyond.
CurrOpinBiotechnol 44: 94–102.
[108]
Dowdell, K., Haig, S.J., Caverly, L.J., Shen, Y.,
LiPuma, J.J., and Raskin, L. (2019) Nontuberculous mycobacteria in drinking
water systems – the challenges of characterization and risk mitigation.
CurrOpinBiotechnol 57: 127–136