[1] Mahalingam L, Abdulla R, Sani SA, Sabullah MK, Faik
AM, Misson M. Lignocellulosic Biomass –
A Sustainable Feedstock for Acetone-Butanol-Ethanol Fermentation. Periodica Polytechnica
Chemical Engineering 2022; 66(2), 279–296. https://doi.org/10.3311/ppch.18574
[2] Borah AJ, Roy K, Goyal A, Moholkar VS. Mechanistic
Investigations in Biobutanol Synthesis via Ultrasound–Assisted ABE Fermentation
Using Mixed Feedstock of Invasive Weeds. Bioresource Technol 2018. doi:
https://doi.org/10.1016/j
[3] Gottumukkala LD, Mathew AK, Abraham A, Sukumaran R.
Biobutanol production: microbes, feedstock, and strategies. In Elsevier eBooks
2019; 355–377. https://doi.org/10.1016/b978-0-12-816856-1.00015-4
[4] Kumar M, Goyal Y, Sarkar A, Gayen K. Comparative
economic assessment of ABE fermentation based on cellulosic and non-cellulosic
feedstocks. Applied Energy 2012; 93, 193–204.
https://doi.org/10.1016/j.apenergy.2011.12.079
[5] Nalawade K,
Kadam V, Behera S, Konde K, Patil S. Sustainable butanol biofuels. Chapter 6
Mechanisms and Applications of Biofuel. In CRC Press eBooks 2023.
https://doi.org/10.1201/9781003165408
[6] Li Y, Wei T, Chen Y, Liu J, Lee CFF. Potential of
acetone-butanol-ethanol (ABE) as a biofuel. Fuel 2019; 242, 673–686.
https://doi.org/10.1016/j.fuel.2019.01.063
[7] Tsai TY, Lo YC, Dong C, Nagarajan D, Chang JS, Lee DH.
Biobutanol production from lignocellulosic biomass using immobilized
Clostridium acetobutylicum. Applied Energy 2020; 277, 115531.
https://doi.org/10.1016/j.apenergy.2020.115531
[8] Qureshi N, Blaschek HP. Recent advances in ABE fermentation:
hyper-butanol producing Clostridium beijerinckii BA101. Journal of Industrial
Microbiology & Biotechnology 2001; 27, 287 – 291.
[9] Li S, Huang L, Ke C, Pang Z, Liu L. Pathway
dissection, regulation, engineering and application: lessons learned from
biobutanol production by solventogenic clostridia. Biotechnology for Biofuels
2020; 13(1). https://doi.org/10.1186/s13068-020-01674-3.
[10] Schwarz K, Grosse-Honebrink A, Derecka K, Rotta C,
Zhang Y, Minton NP. Towards improved butanol production through targeted
genetic modification of Clostridium pasteurianum. Metabolic Engineering 2017;
40, 124–137. https://doi.org/10.1016/j.ymben.2017.01.009.
[11] Du G, Che J, Wu Y, Wang Z, Jiang Z, Feng J, Xue C.
Disruption of hydrogenase gene for enhancing butanol selectivity and production
in Clostridium acetobutylicum. Biochemical Engineering Journal 2021; 171,
108014. https://doi.org/10.1016/j.bej.2021.108014
[12] Wen Z, Li Q, Liu J, Jin M, Yang S. Consolidated
bioprocessing for butanol production of cellulolytic Clostridia: development
and optimization. Microbial Biotechnology 2019; 13(2), 410–422.
https://doi.org/10.1111/1751-7915.13478
[13] Jang Y, Lee JY, Lee J, Park JH, Im JA, Eom M, Lee JH,
Lee SH, Song H, Cho JH, Seung DY, Lee SY. Enhanced butanol production obtained
by reinforcing the direct butanol-forming route in Clostridium acetobutylicum.
MBio 2012; https://doi.org/10.1128/mbio.00314-12
[14] Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S. Disruption of the acetoacetate decarboxylase
gene in solvent-producing Clostridium acetobutylicum increases the butanol
ratio. Metabolic Engineering 2009; 11(4–5), 284–291.
https://doi.org/10.1016/j.ymben.2009.06.002
[15] Mann MS, Lütke‐Eversloh T. Thiolase engineering for
enhanced butanol production inClostridiumacetobutylicum. Biotechnology and
Bioengineering 2012; 110(3), 887–897. https://doi.org/10.1002/bit.24758
[16] Qureshi N, Saha BC, Hector RE, Cotta MA. Removal of
fermentation inhibitors from alkaline peroxide pretreated and enzymatically
hydrolyzed wheat straw: Production of butanol from hydrolysate using
Clostridium beijerinckii in batch reactors. Biomass and Bioenergy 2008a;
32(12), 1353–1358. https://doi.org/10.1016/j.biombioe.2008.04.009
[17] Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA.
Blaschek HP. Butanol production by Clostridium beijerinckii. Part I: use of
acid and enzyme hydrolyzed corn fiber. Bioresoure Technology 2008b; 99:5915–22.
[18] Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA.
Production of butanol (a biofuel) from agriculture residues: Part I- Use of
barley straw hydrolysate. Biomass and Bioenergy 2010a; 34(4), pp. 559–565.
[19] Qureshi N, Saha BC, Hector RE, Dien B, Hughes S, Liu
S, Iten L, Bowman MJ, Sarath G, Cotta MA. Production of butanol (a biofuel)
from agricultural residues: Part II- Use of corn stover and switchgrass
hydrolysate. Biomass and Bioenergy 2010b;
34(4), pp. 566–571.
[20] Paniagua-García AI, Hijosa‐Valsero M, Díez-Antolínez
R, Sánchez M, Coca M. Enzymatic hydrolysis and detoxification of
lignocellulosic biomass are not always necessary for ABE fermentation: The case
of Panicum virgatum. Biomass and Bioenergy 2018; 116, 131–139.
https://doi.org/10.1016/j.biombioe.2018.06.006
[21] Su C, Li Q, Cai D, Chen B, Chen H, Zhang C, Si Z, Wang
Z, Li G, Qin P. Integrated ethanol fermentation and acetone-butanol-ethanol
fermentation using sweet sorghum bagasse. Renewable Energy 2020; 162,
1125–1131. https://doi.org/10.1016/j.renene.2020.07.119
[22] Kaushal M, Ahlawat S, Makut BB, Goswami G, Das D. Dual
substrate fermentation strategy utilizing rice straw hydrolysate and crude
glycerol for liquid biofuel production by Clostridium sporogenes NCIM 2918.
Biomass and Bioenergy 2019; 127, 105257,
.https://doi.org/10.1016/j.biombioe.2019.105257.
[23] Zhang X, Feng X, Zhang H, Wei Y. Utilization of
steam-exploded corn straw to produce biofuel butanol via fermentation with a
newly selected strain of Clostridium acetobutylicum. BioResources 2018; 13(3),
5805–5817.
[24] Ezeji TC, Qureshi N, Blaschek HP. Continuous butanol
fermentation and feed strach retrogradation: butanol fermentation
sustainability using Clostridium beijerinckii BA101. Journal of Biotechnology
2005; 115(2), 179–187. https://doi.org/10.1016/j.jbiotec.2004.08.010.
[25] Fathima AA, Sanitha M, Kumar T, Iyappan S, Ramya M.
Direct utilization of waste water algal biomass for ethanol production by
cellulolytic Clostridium phytofermentas DSM1138. Bioresource Technology 2015;
202, pp. 253–256, https://doi.org/10.1016/j.biortech.2015.11.075
[26] Gao K, Orr V, Rehmann L. Butanol fermentation from
microalgae-derived carbohydrates after ionic liquid extraction. Bioresource
Technology 2016; 206, pp. 77–85,
.https://doi.org/10.1016/j.biortech.2016.01.036
[27] Efremenko E, Nikolskaya A, Lyagin I, Senko O, Makhlis
T, Stepanov N. Production of biofuels from pretreated microalgae biomass by
anaerobic fermentation with immobilized Clostridium acetobutylicum cells.
Bioresour technol 2012; 114:342–8.
[28] Chang Z, Cai D, Wang Y, Chen C, Fu C, Wang G, Qin P,
Wang Z, Tan T. Effective multiple stages continuous acetone–butanol–ethanol
fermentation by immobilized bioreactors: Making full use of fresh corn stalk.
Bioresource Technology 2016; 205, 82–89.
https://doi.org/10.1016/j.biortech.2016.01.034
[29] González-Peñas H, Lú-Chau TA, Moreira MT, Lema JM.
Solvent screening methodology for in situ ABE extractive fermentation. Applied
Microbiology and Biotechnology 2014; 98(13), 5915–5924.
https://doi.org/10.1007/s00253-014-5634-6
[30] Haigh KF, Petersen AM, Gottumukkala LD, Mandegari M,
Naleli K, Görgens JF. Simulation and comparison of processes for biobutanol
production from lignocellulose via ABE fermentation. Biofuels. Bioproducts and
Biorefining 2018; 12(6), 1023–1036. https://doi.org/10.1002/bbb.1917